
IJSRSET1624155 | Received : 14 August 2016 | Accepted : 21 August 2016 | July-August 2016 [(2) 4 : 731-734]

© 2016 IJSRSET | Volume 2 | Issue 4 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

731

A Time Sharing Scheduler with Multiple Priority Based Queues for

Improving Scheduling in Hadoop Cluster - Cloud Environment
Bakul Panchal1, Priya Chak2, Jayesh Mevada2

1Information Technology, L. D. College of Engineering, Ahmedabad, Gujarat, India
2Computer Engineering, Merchant Engineering College, Basna, Gujarat, India

ABSTRACT

Today, In the Era of Big data, it is in need of high levels of scalability and efficiently processing is main issue. So

there is lot of challenges to handling data like how to store, retrieve and to process data efficiently. Hadoop is a

distributed software platform for processing big data on a large cluster, which implements basic mechanism of

Google’s MapReduce. The MapReduce job-scheduling algorithm is one of the core technologies of Hadoop. The

default job scheduler of Hadoop is FIFO, which will start the job in the order as it is submitted, and this causes the

job to be started later when it is submitted later. This paper uses the Time Sharing with increased time slot algorithm

to solve this problem. With this scheduler, the job which is submitted late, will get quick response and started

without long delay.

Keywords: Cloud Computing, FIFO, FAIR, Hadoop , MapReduce , Scheduling, SLS, Time Sharing.

I. INTRODUCTION

Big data has become very popular in cloud computing

area. Hadoop is an open source distributed software

platform, which is good for processing big data. And

hadoop is an implementation of MapReduce

programming model, which can run applications in the

cluster that consists of large number of commodity

nodes. It also provides a reliable and scalable

distributed file system [9].

In Hadoop, there is a master node and some slave

nodes. In the master node, there is a process named

JobTracker and in each slave node, there is a process

named TaskTracker. The JobTracker is responsible for

splitting one job into some tasks and then assign these

tasks to TaskTracker. The TaskTracker is the node in

which the task is actually running [2].

Job scheduling algorithm is one of the core

technologies of Hadoop. The job scheduling algorithm

controls the order in which each task will run and also

controls the allocation of resources. In Hadoop, the

default job scheduler is FIFO. Usually the size of jobs

are not the same, some jobs are very short. And for

these short jobs, they will be delayed for a long time

until jobs ahead of them in the queue are completed,

and this will result in a very long response time for

these jobs [1].

So we are going to propose a method which can solve

this problem. In this method the time is divided into

slots and each job will get a time slot fairly. In

addition, if job is not completed in given time slot then

it will be moved to the next queue which has more

time slot than earlier one.

This paper is organized as follows. In section II, we

review the current job schedulers in Hadoop. Then we

describe the procedure of job scheduling in Hadoop

and the problems we want to resolve in section III. In

section IV we present the Scheduler design, Pseudo

code and implementation of our scheduler. Then

Experimental results are showed in section V. Finally,

we conclude our algorithm in section VI.

II. METHODS AND MATERIAL

1. Related Work

There are many researches has been done on Hadoop

Scheduling. FIFO is a default scheduler of Hadoop.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 732

The main objective of FIFO scheduler is to schedule

jobs based on First In First Out. It does not consider

priority or size of the job. FIFO scheduler allows jobs

to utilize the entire cluster capacity so it has many

limitations such as poor response times for short jobs

compared to large jobs, Low performance when run

multiple types of jobs etc. [1]

Fair scheduling is a method of assigning resources to

jobs such that all jobs get, on average an equal share

of resources over time. It lets short jobs complete

within a reasonable time while not starving long jobs

[2]. The objective of Fair scheduling algorithm is to do

an equal distribution of compute resources among the

users/jobs in the system. Fair scheduling can covers

some limitation of FIFO such as it can work well in

both small and large clusters and it is less complex.

Fair scheduling algorithm gives better response time

but as number of jobs in queues increases all over

throughput decreases, Because it does not consider the

job weight of each node, which is an important

disadvantage of it. The Capacity Scheduler is designed

to allow sharing of large cluster while giving each

organization a minimum capacity guarantee. The

central idea is that the available resources in the

Hadoop Map-Reduce cluster are partitioned among

multiple organizations that collectively fund the

cluster based on computing needs and an organization

can access any excess capacity no being used by

others. This provides elasticity for the organizations in

a cost-effective manner [3]. Workload Characteristic

and Resource Aware Scheduling Considers the job

characteristics and node status. WCRA is less complex

and It can provide fast response time for small jobs.

However WCRA has a Disadvantage that it does not

consider the weight of large jobs [4].

2. Proposed Methodology

Fair Scheduler gives a fair share of the resources

available. In this scheduling each job will get one slot

for every round, if the number of jobs in the cluster is

N and the running time of each task is t, then the

average turnover time is N*t. so when the number of

jobs get larger, the turnover time will also become

larger, and the same as the waiting time for each job.

Fair scheduler increases average response time of jobs

but not throughput of entire cluster. The number of

the jobs in the cluster can be very large, at this

situation; the completion time of each job can be very

long, especially for the jobs in the tail. And the

throughput of the cluster will be brought down as the

number of jobs grows. So we use multiple ready

queues to hold all the jobs in the cluster. When the

multiple queues with different priorities are applied,

the jobs will be transferred from queue with high

priority to queue with low priority, and the slots that

each job get will also get larger and larger. So for a

job with x tasks, the times of round will be less than x,

and it will increase the throughput of Hadoop.

So we decided to modify the existing Fair scheduler

to support the desired functionalities. The Hadoop

framework consists of a JobTracker in the master

node and a set of TaskTrackers in the slave nodes.

And the JobTracker is responsible for scheduling the

jobs and assigning the tasks of each job to

TaskTracker. TaskTracker sends the heartbeat signal

to JobTracker continuously and will get the tasks that

assigned to itself in the message of response from

JobTracker.

3. Implementation Strategy

 Scheduler Design

Fig 1 describes a Time Sharing Scheduler with

multiple queues based on priority. The tasks that are

not completed are shifted to next queue having low

priority. The jobs that are completed are removed

from queue.

Figure 1. Procedure of Time sharing with multiple

priority queues scheduler

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 733

 Algorithm:

[1] There are N queues in the cluster and each

queue is offered a priority.

[2] For each queue, there is a quota allotted which

will be consumed in each round and the quota is

larger as the priority is less.

[3] At the beginning, the Job Tracker will choose The

queue with highest priority, and for this queue, the

specified slots will be consumed by jobs in the

queue in Time Sharing manner. After that, the

jobs, which are not completed, will be Transferred

to the next queue with lower priority, so that in

next round, these jobs can get more slots. If the

queue with high priority become empty, then the

queue with low priority can get the slots.

 Implemented Pseudo Code

void scheduler()

{

freeslots=count the information of

heartbeat;

Jobqueue jobqueue =

GetCurrentjobqueue();

while(freeslots > 0)

{

If (current job of head job is not

completed)

 Then

move the head job of this queue to next

queue with lower priority;

 else

 remove it from this queue

 endif

 if (jobqueue.isempty)

 then

 move to next job queue

endif

update head job information

 }

 }

III. RESULTS AND DISCUSSION

1. Experimental Results

We have used Scheduling load Simulator provided by

Apache. Several optimizations are also made to

improve scheduler performance for different scenarios

and workload. Each scheduler algorithm has its own

set of features, and drives scheduling decisions by

many factors, such as fairness, capacity guarantee,

resource availability, etc. Unfortunately, currently it is

non-trivial to evaluate a scheduler algorithm.

Evaluating in a real cluster is always time and cost

consuming, and it is very hard to find a large-enough

cluster. Hence, a simulator, which can predict how

well a scheduler algorithm for some specific workload,

would be quite useful. It is very important to evaluate

a scheduler algorithm very well before we deploy in a

production cluster. The Scheduler Load Simulator

(SLS) is such a tool, which can simulate application

loads in a single machine [20].

We have used 3 Computers having 4 GB RAM and

360 GB hard Disk. We installed Single node setup of

Hadoop and given different size of data as input to

check the output time by using simple program of

WordCount.java. We got better performance for FAIR

with compared to FIFO. Then we compared output of

FAIR scheduling with our proposed scheduling output.

Outputs are shown in below table. We have given

input File of Different Size and observed their Output

in Seconds. Comparison chart is also shown below.

Detailed analysis shows that at initial stage when input

file size is small, FAIR scheduler and MyScheduler

gives same efficiency but as the input file size

increases MyScheduler gives better efficiency than

FAIR scheduler gives.

TABLE I

OUTPUT OF DIFFERENT SCHEDULERS

Input

Size

Time in Second

FIFO FAIR MyScheduler

64 MB 1.3 0.9 0.9

128 MB 2.3 1.9 1.9

192 MB 3.1

2.6 2.3

256 MB 3.9 3.3 3

A. Section Headings

No more than 3 levels of headings should be used. All

headings must be in 10pt font. Every word in a

heading must be capitalized except for short minor

words as listed in Section III-B.

Level-1 Heading: A level-1 heading must be in Small

Caps, cantered and numbered using uppercase Roman

numerals. For example, see heading “III. Page Style” Fig.

2 Comparison Chart of FIFO, FAIR and MyScheduler

Figure 2. Comparison Chart of FIFO, FAIR and

MyScheduler

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 734

IV. CONCLUSION

We can see that initially for small input file size FAIR

and My Scheduler algorithm runs equally but as file

size increases My Scheduler gives better performance

than default scheduling algorithms of hadoop. Using

the proposed Method of scheduling, we can maintain

average response time as well as Increase average job

completion time and thus efficiency of scheduling in

Hadoop is increased more than its default scheduling

algorithms like FIFO and FAIR.

V. REFERENCES

[1] Jiayin Wang, Yi Yao, Ying Mao, Bo Sheng,

Ningfang Mi, “Fair and Efficient Slot

Configuration and Scheduling for Hadoop

Clusters” , 978-1-4799-5063-8/14 © 2014. IEEE

DOI 10.1109/CLOUD.2014.

[2] Fair scheduler [online]

https://hadoop.apache.org/docs/r1.2.1/fair_schedu

ler.html

[3] Capacity scheduler [online]

https://hadoop.apache.org/docs/r1.2.1/capacity_sc

heduler.html

[4] Divya M, Annappa B, “Workload Characteristics

and Resource Aware Hadoop Scheduler “ 978-

1-4799-8349-0/15 ©2015 IEEE.

[5] Yi Yao, Jianzhe Tai, Bo Sheng, and Ningfang

Mi,Member, IEEE, “LsPS: A Job Size-Based

Scheduler for Efficient Task Assignments in

Hadoop “ , 2168-7161 © 2014 IEEE.

[6] R.Thanga selvi, R.Aruna, “Longest Approximate

Time to end Scheduling Algorithm in HADOOP

Environment” ISSN (ONLINE): 2454-

9762,ISSN (PRINT): 2454-9762. 2016.

[7] Bin Ye, Xiaoshe Dong, Pengfei Zheng,

Zhengdong Zhu*, Qiang Liu, Zhe Wang“A delay

scheduling algorithm based on history time in

heterogeneous environments “978-0-7695-

5058- 9/13© 2013 IEEE.

[8] Dazhao Chang, Jio Rao, Changjun jiang and

Xiaobo Zhou, “Resource and deadline-aware job

scheduling in Dynamic Hadoop Clusters “ , 1530-

2075/15 @ 2015 IEEE, DOI

10.1109/IPDPS.2015.

[9] Garima Sharma, Dr. Anita Ganpati “Performance

evaluation of fair and capacity scheduling in

Hadoop YARN” , 978-1-4673-7910-6/15/$31.00

©2015 IEEE

[10] Seyed Reza Pakize, “ A Comprehensive View of

Hadoop MapReduce Scheduling Algorithms “,

ISSN 2308-9830.

[11] Aprigio Bezerra_†, Porfidio Hern´andez_,

Antonio Espinosa_ and Juan Carlos

Moure_Escola d’Enginyeria “Job Scheduling in

Hadoop with Shared Input Policy and RAMDISK

“,978-1- 4799-5548-0/14/$31.00 ©2014 IEEE

[12] Shen Li ∗, Shaohan Hu ∗, Shiguang Wang ∗, Lu

Su †, Tarek Abdelzaher ∗, Indranil Gupta∗,

Richard Pace, “WOHA: Deadline-Aware Map-

Reduce Workflow Scheduling Framework over

Hadoop Clusters” 1063-6927/14 $31.00 © 2014

IEEE,DOI 10.1109/ICDCS.2014.

[13] Rakesh Verma “ Survey on MapReduce and

Scheduling Algorithms in Hadoop” paper ID:

SUB151194. International Journal of Science and

Research (IJSR),ISSN (Online): 2319-7064.

[14] Mr.A.U.Patil1, Mr T.I Bagban2, Mr.A.P.Pande,

“Recent Job Scheduling Algorithms in Hadoop

Cluster Environments “ , ISSN : 2278-1021, 2011.

[15] Peng Qin, Bin Dai, Benxiong Huang, and Guan

Xu, “ Bandwidth-Aware Scheduling With SDN

in Hadoop:A New Trend for Big Data “ , 1932-

8184 © 2015 IEEE.

[16] Deveeshree Nayak, Venkata Swamy Martha,

David Threm,Srini Ramaswamy,Summer Prince

and Gunter Fahrnberger, “Adaptive Scheduling in

the Cloud – SLA for Hadoop Job Scheduling “ ,

2015

[17] Jisha S Manjaly, Varghese S Chooralil,

“TaskTracker Aware Scheduling for Hadoop

MapReduce” in Third International Conference

on Advances in Computing and Communications,

2013.

[18] Prajesh P Anchalia,” Improved MapReduce k-

Means Clustering Algorithm with Combiner”,

978-1-4799-4923-6/14 © 2014 IEEE,DOI

10.1109/UKSim.2014.

[19] Akram Roshdi, Mahboubeh shamsi, " Review:

Big data on Cloud computing" ISSN: 2319, july

2015.

[20] https://hadoop.apache.org/docs/r2.4.1/hadoop-

sls/SchedulerLoadSimulator.html.

